Утверждено на кафедре Высшей математики Санкт-Петербургский ____ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МС государственый университет телекоммуникаций Дисциплина_ им. проф. М.А.Бонч-Бруевича Зав. кафедрой .

Курс___ Факультет_

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 9

Задача 1.

Имеются изделия четырех сортов, причем число изделий

каждого сорта равно 2, 7, 3, 6 Для контроля наудачу берутся 12 изделий.

Определить вероятность того, что среди них

1 – первого, 5 – второго,

2 – третьего и 4 – четвертого сорта.

Задача 2. Имеются две одинаковые урны, содержащие

7 белых, 8 черных и 5 красных шаров каждая.

Из первой урны случайным образом вытаскивается один шар и перекладывается во вторую урну.

Затем из второй урны вытаскивается два шара.

Найти вероятность, что они оба белые?

Независимые случайные величины Х и У распределены следующим образом: X -1

0

Задача 3.

q 0.2 0.1 p 0.4 0.1 0.5 Найти ряд распределения и числовые характеристики случайной величины Z = X * Y.

1

Задача 4. Плотность распределения вероятностей

случайной величины X является линейной функцией вида $c(1-\frac{x}{5})$, 0 < x < 5, график ее представлен на рисунке:

а также вероятность неравенства $1 \le X \le 2$.

Задача 5. Задан совместный ряд распределения системы двух случайных величин (X,Y):

-1 0.2 0.05 0.05 0.4 Найти маргинальные (частные) ряды распределения Х и Ү,

0

1

Задача 6.

математическое ожидание, дисперсию и коэффициент корреляции X и Y.

Рассматривается среднее арифметическое независимых случайных величин $\frac{1}{144}\sum_{k=1}^{144}X_k$. Все случайные величины имеет одинаковое математическое ожидание 20 и дисперсию 64.

Оценить с помощью ЦПТ вероятность события

 $\frac{55}{3} < X < \frac{64}{3}$ Ответ выразить в терминах функции Лапласа.

Задача 7. Имеется выборка из нормального закона

объема n = 11.

Для этой выборки известны выборочное среднее m_n = 1257

и выборочная дисперсия $D_n^* = 360$.

Построить доверительный интервал для оценки математического ожидания с

Справочно (квантили распределения Стьюдента):

ı			0.95	0.975	0.995
ı	k	8	1.86	2.31	3.36
ı		9	1.83	2.26	3.25
ı		10	1.81	2.23	3.17
ı		11	1.8	2.2	3.11

Уровни

доверительной вероятностью $\beta = 0.95$

Задача 8. Известно, что плотность вероятности случайной величины Х

есть симметричная функция относительно математического ожидания т.

Что можно сказать о значении функции

распределения вероятностей F(x) в точке x=m? Ответ обосновать.